منتدى علوم المنصورة
معادلة انشتاين فى النسبية العامة Ezlb9t10


منتدى علوم المنصورة
معادلة انشتاين فى النسبية العامة Ezlb9t10

منتدى علوم المنصورة
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

منتدى علوم المنصورةدخول

اهلا بك يا زائر لديك 16777214 مساهمة


descriptionمعادلة انشتاين فى النسبية العامة Emptyمعادلة انشتاين فى النسبية العامة

more_horiz
بصورة عامة حل معادلة انشتاين يعطى الممتدد المترى و هو تلك الدالة التى تعرف طول الفترة فى الزمنكان

احتمالان:

1) اذا كان الممتدد المترى دالة ثابتة لا تعتمد على متغيرات الزمنكان (t, x,y,z) فان الفضاء يكون مستويا ولا يوجد به انحناء وعليه لا توجد جاذبية و تؤول النظرية النسبية العامة الى النسبية الخاصة

2) اذا كان الممتدد المترى دالة فى متغيرات الزمنكان فان الفضاء يكون منحنيا و توجد قوى جذب كونى

الان ماهو الممتدد المترى ؟

يعرف الممتدد المترى على انه يعطى تعريفا لطول المتجة فى الفضاء
دعنا نبدأ من فيثاغورث و افترض متجهين يعطيان ب

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]

ماهو البعد بين هذين المتجهين؟ بالطبع البعد هو القيمة المطلقة للفرق بين المتجهين

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
ولما كان المتجين قريبين من بعضهما البعض فان الفرق فى الاحداثيات يمكن تمثيله كتغير طفيف يعبر عنه بالرمز dr وعليه نعيد كتابة المعادلة (3) على النحو المختصر التالى :

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]

وهكذا نجد ان مربع طول المتجة يعطى بالضرب القياسى للمتجه dr مضروبا فى نفسه (فيثاغورث فى ثلاثة ابعاد x ,y,z) اى ان

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]

الان نريد كتابة هذه المعادلة على النحو الذى يسمح بتعريف الممتدد المترى

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]

حيث ان المعاملات التى تظهر فى مقدمة مربع التغير فى x و y و z تساوى الواحد الصحيح فى هذا المثال لاننا نتحدث عن بعد بين متجهين فى فضاء مستوى ولكن بشكل عام فى الفضاءت غير المستوية تكون هذه المعاملات دوال فى x و y و z وهذه المعاملات تعرف على انها مركبات الممتدد المترى


الممتد المترى فى فضاء مستوى رباعى الابعاد

تعلمنا من النظرية النسبية الخاصة بان الزمن يعامل على انه بعد رابع وعليه يصبح الفضاء زمنكانيا بدلا عن مكانيا ويكون المتجه فى الزمنكان متجه رباعى الابعاد

الطول الفاصل بين اى متجهين رباعيين يحمل خاصية المكان و خاصية الزمان ونسميه بالفترة المكانية-الزمانية (الفترة الزمنكانية) ويرمز لطول الفترة بالرمز ds

الان نستطيع تكرر نفس الخطوات فى حساب مربع طول متجه فى فضاء ثلاثى الابعاد من اجل حساب مربع طول الفترة الزمنكانية, وببساطة سوف نقوم باضافة مربع البعد الزمنى للمعادلة (5) ولكن كم تعلم ان البعد الزمنى فى النسبية الخاصة هو بعد تخيلى ict ولهذا فان مربعه يكون سالبا
وعليه يكون

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]

والتى يمكن اعادة كتابتها على نفس النحو الذى اتخذناه فى كتابة المعادلة (6) لنحصل على

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]

حيث المعامل [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] يساوى -1 و بقية المعاملات تساوب +1 فى هذا المثال لفضاء مستوى رباعى الابعاد اما بشكل عام فان هذه المعاملات تكون دوال فى متغيرات الزمنكان وتظل دائما المركبة الزمانية للممتدد المترى دالة سالبة الاشارة بينما بقية المركبات تكون دوال موجبة الاشارة

ترميز

من اجل الاختصار سوف نقوم بتغير الترميز وذلك لكى نختصر الكتابة
سوف نسمى البعد الزمنى بالبعد الصفرى و البعد فى x بالبعد الاول والبعد فى y بالبعد الثانى والبعد فى z بالبعد الثالث ونعبر عن كل هذا بالشكل المختصر التالى :

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
لاحظ ان المعامل اعلى x لا يمثل اسا وانما فقط رقم يمثل ترتيب البعد

واذا قمنا باستبدال الترميز القديم بهذا الترميز (فقط استبدل ct و x و y و z بمقابلاتها فى المعادلة (9)) فى معادلة مربع الفترة (8) نحصل على الشكل التالى :

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]

المركبات [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] و [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] و [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] و [ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة] تمثل مركبات الممتدد المترى فى الفضاء الزمنكانى المستوى رباعى الابعد واذا كانت هذه المركبات تعتمد المتغيرات الزمنكانية فان تكون ملركبات الممتدد المترى للزمنكان المنحنى رباعى الابعاد
نوعان من المتجهات الرباعية

نعلم من مبادئ الجبر الخطى ان المتجه يمكن تمثيله بمصوفة عمودية (بها عمود واحد وعدة صفوف) او بمصفوفة صفية (بها صف واحد وعدة اعمدة)
الان دعنا نمثل المتجه الرباعى على النحو التالى

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]

حيث المعامل ميو يأخذ القيم 0و 1 و 2 و 3 وبالطبع اذا اخذ ميو القيمة 0 فان هذا يقابل الصف الصفرى و اذا اخذ ميو القيمة 1 فهذا يقابل الصف 1 ...الخ

لاحظ اننا لكى نضرب اى مصفوفتين فيجب ان يكون عدد اعمدة المصفوفة الا ولى مساوى لعدد صفوف المصفوفة الثانية و فبما عدا هذا فان ضرب المصفوفة الاولى فى الثانية لن يكون معرفا (ممكننا). ولهذا السبب سوف نحتاح الى تحويل المتجه الرباعى من مصفوفة عمودية الى مصفوفة صفية لكى نتمكن من ضربه فى نفسه لكى نحصل على مربع طول المتجه الرباعى .
ولكى نمييز بين المتجه الرباعى الممثل بمصفوفة عمودية و المتجه الرباعى الممثل بمصفوفة صفية سوف نكتب المعامل ميو اعلى x فى حالة المصفوفة العمودية ونكتبه اسفل x فى حالة المصفوفة الصفية اى ان

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]



الان نريد استخدم مفهوم ضرب مصفوفتين فى تعريف مربع الفترة ودعنا فقط نضرب المصفوفة الصفية للمتجه الرباعى فى المصفوفة العمودية لحصل على المعادلة التالية

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]

وبمقارنة سريعة بين هذه المعادالة والمعادلة (10) نجد ان :

[ندعوك للتسجيل في المنتدى أو التعريف بنفسك لمعاينة هذه الصورة]
اى ان مركبات الممتدد المترى تعمل على تنزيل المعامل من اعلى x الى اسفل x . من الان ولاحقا سوف نسمى المتجه الرباعى الذى يمثل بمصوفة عمودية (ميو توجد فى اعلى x ) بمتجه كونترافيرينت contravariant اما المتجه الرباعى الذى يمثل بمصفوفة صفية (ميو توجد فى اسفل x) بمتجه كوفيرينت covariant
وهكذا يعمل الممتدد المترى على تحويل الكونترافيرينت الى كوفيرينت (والعكس ايضا صحيح
يستكمل

descriptionمعادلة انشتاين فى النسبية العامة Emptyرد: معادلة انشتاين فى النسبية العامة

more_horiz
شكرا على المجهود
giver
privacy_tip صلاحيات هذا المنتدى:
لاتستطيع الرد على المواضيع في هذا المنتدى
power_settings_newقم بتسجيل الدخول للرد